V = 2871.95 (9) Å<sup>3</sup>

Mo Ka radiation

22168 measured reflections

5249 independent reflections

4216 reflections with  $I > 2\sigma(I)$ 

 $\mu = 1.25 \text{ mm}^{-1}$ 

T = 200 (2) K $0.30 \times 0.18 \times 0.08 \text{ mm}$ 

 $R_{\rm int} = 0.032$ 

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Bis(µ-1H-benzimidazole-5,6-dicarboxylato)bis[tetraaquadicobalt(II)] pentahydrate

### Yu-Lin Lo, Wen-Chieh Wang, Gon-Ann Lee and Yen-Hsiang Liu\*

Department of Chemistry, Fu Jen Catholic University, Hsinchuang, Taipei 24205, Taiwan

Correspondence e-mail: chem2022@mails.fju.edu.tw

Received 19 September 2007; accepted 1 October 2007

Key indicators: single-crystal X-ray study; T = 200 K; mean  $\sigma$ (C–C) = 0.004 Å; Hatom completeness 97%; disorder in solvent or counterion; R factor = 0.040; wR factor = 0.103; data-to-parameter ratio = 12.7.

The title compound,  $[Co_2(C_9H_4N_2O_4)_2(H_2O)_8] \cdot 5H_2O$ , contains two Co<sup>II</sup> ions that are bridged by two 1*H*-benzimidazole-5,6dicarboxylate ligands to form an  $M_2L_2$  type complex (M =metal and L = ligand). There are two crystallographically distinct  $M_2L_2$  units, each on an inversion centre, along with coordinated and uncoordinated water molecules, in the asymmetric unit. The Co<sup>II</sup> ions are octahedral. Extensive hydrogen bonding exists between the complex and water molecules, and this helps to stabilize the crystal structure. One water molecule is disordered over two sites with occupancies 0.84:0.16.

#### **Related literature**

Metal–organic coordination polymers using 1*H*-benzimidazole-5-carboxylic acid as a bridging ligand were reported by Guo *et al.* (2006) and Liu *et al.* (2005).



### Experimental

#### Crystal data

 $[Co_2(C_9H_4N_2O_4)_2(H_2O)_8] \cdot 5H_2O$   $M_r = 760.35$ Monoclinic,  $P2_1/c$  a = 13.4210 (2) Å b = 9.1096 (2) Å c = 23.8185 (4) Å  $\beta = 99.5191$  (6)°

#### Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003)  $T_{min} = 0.776, T_{max} = 0.905$ 

#### Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.040 & & 412 \text{ parameters} \\ wR(F^2) &= 0.103 & & H\text{-atom parameters constrained} \\ S &= 1.10 & & \Delta\rho_{\text{max}} = 0.72 \text{ e } \text{\AA}^{-3} \\ 5249 \text{ reflections} & & \Delta\rho_{\text{min}} = -0.41 \text{ e } \text{\AA}^{-3} \end{split}$$

#### Table 1 Hydrogen-bond geometry

Hydrogen-bond geometry (Å, °).

| $\overline{D - \mathbf{H} \cdots \mathbf{A}}$ | D-H  | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------------------------|------|--------------|--------------|---------------------------|
| $N2-H2\cdots O94^{i}$                         | 0.86 | 1.96         | 2.779 (4)    | 159                       |
| N4-H4···O93                                   | 0.86 | 1.84         | 2.673 (4)    | 164                       |
| $O81 - H81A \cdot \cdot \cdot O3^{ii}$        | 0.86 | 1.84         | 2.683 (3)    | 166                       |
| $O81 - H81B \cdot \cdot \cdot O85^{iii}$      | 0.84 | 2.05         | 2.883 (3)    | 172                       |
| O82−H82A···O3                                 | 0.85 | 2.14         | 2.974 (3)    | 169                       |
| $O82 - H82B \cdot \cdot \cdot O4^{ii}$        | 0.85 | 1.84         | 2.691 (3)    | 176                       |
| $O83-H83A\cdots O95^{iv}$                     | 0.83 | 2.05         | 2.812 (4)    | 153                       |
| $O83 - H83B \cdot \cdot \cdot O6^{ii}$        | 0.85 | 1.96         | 2.721 (3)    | 147                       |
| O84−H84A···O2                                 | 0.85 | 1.8          | 2.616 (3)    | 162                       |
| $O84-H84B\cdots O4^{v}$                       | 0.85 | 1.88         | 2.708 (3)    | 165                       |
| $O85-H85A\cdots O92^{vi}$                     | 0.85 | 2.02         | 2.850 (4)    | 167                       |
| $O85-H85B\cdots O7^{vii}$                     | 0.85 | 1.82         | 2.649 (3)    | 168                       |
| $O86-H86A\cdots O8^{vii}$                     | 0.83 | 1.88         | 2.711 (3)    | 176                       |
| O86−H86 <i>B</i> ···O7                        | 0.83 | 2.03         | 2.859 (3)    | 178                       |
| $O87 - H87A \cdots O6$                        | 0.84 | 1.85         | 2.642 (3)    | 156                       |
| $O87 - H87B \cdot \cdot \cdot O8^{viii}$      | 0.85 | 1.86         | 2.689 (3)    | 166                       |
| $O88-H88A\cdots O91^{vii}$                    | 0.84 | 1.98         | 2.813 (3)    | 173                       |
| $O88-H88B\cdots O3^{vii}$                     | 0.85 | 1.9          | 2.732 (3)    | 165                       |
| O91−H91A···O95                                | 0.85 | 1.99         | 2.836 (4)    | 180                       |
| O91−H91B···O84                                | 0.86 | 1.98         | 2.837 (3)    | 174                       |
| O92−H92A···O91                                | 0.86 | 2.05         | 2.813 (4)    | 148                       |
| $O92 - H92B \cdot \cdot \cdot O87^{v}$        | 0.85 | 2.34         | 3.089 (4)    | 148                       |
| $O93 - H93A \cdots O2^{ix}$                   | 0.86 | 2.07         | 2.844 (3)    | 151                       |
| $O93 - H93A \cdots O88^{x}$                   | 0.86 | 2.6          | 3.045 (4)    | 114                       |
| $O93 - H93B \cdot \cdot \cdot O5^{x}$         | 0.86 | 1.95         | 2.788 (3)    | 168                       |
| $O94 - H94A \cdots O2^{ix}$                   | 0.84 | 2.1          | 2.889 (4)    | 158                       |
| O94−H94A···O93                                | 0.84 | 2.62         | 3.180 (5)    | 126                       |
| $O94 - H94B \cdots O6^{v}$                    | 0.84 | 2.04         | 2.873 (4)    | 174                       |
| $O95 - H95A \cdots O1^{ii}$                   | 0.9  | 2.07         | 2.910 (4)    | 155                       |

Symmetry codes: (i)  $x, -y + \frac{1}{2}, z + \frac{1}{2};$  (ii)  $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2};$  (iii) x - 1, y + 1, z; (iv)  $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2};$  (v) x, y + 1, z; (vi)  $-x + 2, y - \frac{3}{2}, -z + \frac{3}{2};$  (vii)  $-x + 2, y - \frac{1}{2}, -z + \frac{3}{2};$  (viii) x, y - 1, z; (ix)  $x, -y + \frac{3}{2}, z - \frac{1}{2};$  (x) -x + 2, -y + 1, -z + 1.

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *SCALEPACK* (Otwinowski & Minor 1997); data reduction: *DENZO–SMN* (Otwinowski & Minor 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999). The authors gratefully acknowledge the financial support of the National Science Council and Fu Jen Catholic University, Taiwan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2050).

#### References

Farrugia, L. J. (1997). J. Appl. Cryst. **30**, 565. Farrugia, L. J. (1999). J. Appl. Cryst. **32**, 837–838.

- Guo, Z., Yuan, D., Bi, W., Li, X., Wang, Y. & Cao, R. (2006). J. Mol. Struct. 782, 106–109.
- Liu, Z., Chen, Y., Liu, P., Wang, J. & Huang, M. (2005). J. Solid State Chem. 178, 2306–2312.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (2003). SADABS. Version 2. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m2657-m2658 [doi:10.1107/S1600536807048088]

### Bis(#-1H-benzimidazole-5,6-dicarboxylato)bis[tetraaquadicobalt(II)] pentahydrate

### Y.-L. Lo, W.-C. Wang, G.-A. Lee and Y.-H. Liu

#### Comment

N-Heterocyclic carboxylic acids are recognized as efficient N,O-donors exhibiting versatile coordination modes and hydrogen bonding interactions. Examples on the basis of 1*H*-benzimidazole-5-carboxylic acid have been reported, which give rise to various coordination polymers and supramolecular architectures (Guo *et al*.2006; Liu *et al*. 2005). Here we report the crystal structure of the title compound,  $[Co_2(H_2O)_8(C_9H_4N_2O_4)_2]$ ·5H<sub>2</sub>O, using a new family member of the N-heterocyclic carboxylic acids, 1*H*-benzimidazole-5,6-dicarboxylic acid (H<sub>3</sub>BIDC).

The asymmetric unit consists of two 1*H*-benzimidazole-5,6-dicarboxylate (H<sub>3</sub>BIDC) ligands, which are deprotonated to form HBIDC<sup>2–</sup> anions. Each of the Co<sup>II</sup> cations has an octahedral coordination environment, and is surrounded by four coordinated water molecules, one nitrogen atom of the benzimidazole ring, and one oxygen atom of the monodentate carboxylate group. Two Co<sup>II</sup> ions are bridged by two HBIDC<sup>2–</sup> ligands to form a  $M_2L_2$  type complex (*M*: metal, *L*: ligand). There are two crystallographically distinct  $M_2L_2$  units in the asymmetric unit (Fig. 1). A unit-cell packing diagram is shown in Fig. 2. The N-bound H atoms of the benzimidazole ring, the O atoms of the uncoordinated carboxylate group, and coordinated water molecules serve as hydrogen bonding donors and acceptors. Extensive hydrogen bonding interactions (Table 2) were observed among the title compound and solvent water molecules in the solid-state, and these help stabilize the crystal structure.

### **Experimental**

Purple crystals form within 4 days of layering a 2.0 ml me thanol solution of  $Co(NO_3)_2 \cdot 6H_2O(0.1169 \text{ g}, 0.40 \text{ mmol})$  through a 3.0 ml me thanol and 15 ml aqueous buffer layers onto a 10.0 ml aqueous solution containing 1*H*-benzimidazole-4,5-di-carboxylic acid (0.0415 g, 0.20 mmol) and KOH (4*M*, 0.4 ml).

#### Refinement

The C-bound H atoms were placed in calculated positions (C–H = 0.93 Å) and refined in the riding-model approximation with Uiso(H) = 1.2 Ueq(C). The N-bound H atoms were found in a difference Fourier map, but were placed in calculated positions (C–H = 0.86 Å) and refined in the riding-model approximation with Uiso(H) = 1.2 Ueq(N). The H atoms of the coordinated water molecules and solvent water molecules were located in a difference Fourier map, and refined using a riding model with Usio(H) = 1.5 Ueq(O). The water molecule O94 is disordered over two positions; the occupancies of O94 and O94' refined to 0.84 and 0.16, respectively (O94' is only refined isotropically). Only one of the H atoms of solvent water molecule O95 could be found in a difference Fourier map because of its close proximity (*ca* 2.08 Å) to the disordered O94'.

**Figures** 



Fig. 1. The crystallographically distinct  $M_2L_2$  units of the title compound with atom numbering scheme. Atomic displacement ellipsoids are drawn at the 50% probability level. (Symmetry code: (i) 1–x, 1–y, 2–z; (ii) 2–x, –y, 1–z)



Fig. 2. A unit-cell packing diagram viewied down the *b*-axis. (*Key*: aqua sphere: solvent water molecules; pink sphere: Co; blue sphere: N; red sphere: O; gray sphere: C). H atoms are omitted for clarity.

### Bis(µ-1H-benzimidazole-5,6-dicarboxylato)bis[tetraaquadicobalt(II)] pentahydrate

 $F_{000} = 1568$ 

 $D_{\rm x} = 1.759 {\rm ~Mg} {\rm ~m}^{-3}$ 

Cell parameters from 16539 reflections

Mo Kα radiation

 $\lambda = 0.71073 \text{ Å}$ 

 $\theta = 2.0-25.4^{\circ}$ 

 $\mu = 1.26 \text{ mm}^{-1}$ 

T = 200 (2) K

Plate, purple

 $0.30 \times 0.18 \times 0.08 \text{ mm}$ 

Crystal data [Co<sub>2</sub>(C<sub>9</sub>H<sub>4</sub>N<sub>2</sub>O<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>8</sub>]·5H<sub>2</sub>O  $M_r = 760.35$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 13.4210 (2) Å b = 9.1096 (2) Å c = 23.8185 (4) Å  $\beta = 99.5191$  (6)° V = 2871.95 (9) Å<sup>3</sup> Z = 4

### Data collection

| Nonius KappaCCD<br>diffractometer | 5249 independent reflections           |
|-----------------------------------|----------------------------------------|
| Radiation source: sealed tube     | 4216 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite           | $R_{\text{int}} = 0.032$               |
| T = 200(2)  K                     | $\theta_{max} = 25.4^{\circ}$          |
| $\varphi$ and $\omega$ scans      | $\theta_{\min} = 2.1^{\circ}$          |
|                                   |                                        |

| Absorption correction: multi-scan      | $h = -16 \rightarrow 16$ |
|----------------------------------------|--------------------------|
| (SADABS; Sheldrick, 2003)              |                          |
| $T_{\min} = 0.776, \ T_{\max} = 0.905$ | $k = -10 \rightarrow 8$  |
| 22168 measured reflections             | $l = -28 \rightarrow 28$ |

#### Refinement

| H-atom parameters constrained                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| $w = 1/[\sigma^2(F_0^2) + (0.0316P)^2 + 5.0966P]$<br>where $P = (F_0^2 + 2F_c^2)/3$                                                     |
| $(\Delta/\sigma)_{\rm max} = 0.001$                                                                                                     |
| $\Delta \rho_{max} = 0.72 \text{ e} \text{ Å}^{-3}$                                                                                     |
| $\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$                                                                              |
| Extinction correction: SHELXL97 (Sheldrick, 1997)<br>Fc <sup>*</sup> =kFc[1+0.001xFc <sup>2</sup> $\lambda^3$ /sin(20)] <sup>-1/4</sup> |
| Extinction coefficient: 0.0011 (2)                                                                                                      |
|                                                                                                                                         |

#### Special details

**Experimental**. Comment on transmission values: The program *SADABS* (Sheldrick, 2003) outputs the ratio of minimum to maximum apparent transmission (0.858265). We have set  $T(\max)$  to the expected value, *i.e.* exp(- $r_{\min} \times \mu$ ) and we calculate  $T(\min)$  from the minimum to maximum apparent transmission given by *SADABS*.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | у            | Ζ             | $U_{\rm iso}$ */ $U_{\rm eq}$ | Occ. (<1) |
|-----|--------------|--------------|---------------|-------------------------------|-----------|
| Co1 | 0.41028 (3)  | 0.65075 (4)  | 0.836342 (16) | 0.01866 (14)                  |           |
| Co2 | 1.08333 (3)  | -0.16005 (4) | 0.658602 (16) | 0.01864 (14)                  |           |
| N1  | 0.6294 (2)   | 0.2084 (3)   | 1.10033 (10)  | 0.0222 (6)                    |           |
| N2  | 0.64479 (19) | -0.0092 (3)  | 1.06047 (11)  | 0.0232 (6)                    |           |
| H2  | 0.654        | -0.1022      | 1.0578        | 0.028*                        |           |
| N3  | 0.8847 (2)   | 0.3124 (3)   | 0.40404 (10)  | 0.0217 (6)                    |           |
| N4  | 0.86074 (19) | 0.5298 (3)   | 0.44314 (10)  | 0.0215 (6)                    |           |
| H4  | 0.849        | 0.6222       | 0.4455        | 0.026*                        |           |
| 01  | 0.47640 (15) | 0.4841 (2)   | 0.88915 (8)   | 0.0202 (5)                    |           |
| O2  | 0.62779 (17) | 0.5805 (2)   | 0.92141 (10)  | 0.0295 (5)                    |           |
| O3  | 0.59954 (16) | 0.2945 (2)   | 0.83126 (9)   | 0.0235 (5)                    |           |
| O4  | 0.5648 (2)   | 0.0581 (3)   | 0.83878 (9)   | 0.0385 (6)                    |           |
| O5  | 1.01958 (15) | 0.0059 (2)   | 0.60354 (8)   | 0.0200 (5)                    |           |
| O6  | 0.85409 (16) | -0.0311 (2)  | 0.59619 (10)  | 0.0272 (5)                    |           |
| O7  | 0.92964 (19) | 0.2287 (3)   | 0.67434 (9)   | 0.0336 (6)                    |           |
| O8  | 0.9010 (2)   | 0.4670 (2)   | 0.66411 (9)   | 0.0340 (6)                    |           |
| O81 | 0.34490 (16) | 0.7930 (2)   | 0.77188 (9)   | 0.0261 (5)                    |           |

| H81A | 0.3723       | 0.7869      | 0.7418       | 0.039*      |           |
|------|--------------|-------------|--------------|-------------|-----------|
| H81B | 0.2843       | 0.7657      | 0.7627       | 0.039*      |           |
| O82  | 0.44968 (18) | 0.5094 (3)  | 0.77371 (9)  | 0.0322 (6)  |           |
| H82A | 0.4951       | 0.4471      | 0.7859       | 0.048*      |           |
| H82B | 0.4481       | 0.5232      | 0.7381       | 0.048*      |           |
| O83  | 0.27314 (16) | 0.5386 (3)  | 0.83000 (10) | 0.0306 (5)  |           |
| H83A | 0.2782       | 0.4493      | 0.8248       | 0.046*      |           |
| H83B | 0.2304       | 0.5541      | 0.8522       | 0.046*      |           |
| O84  | 0.55289 (15) | 0.7614 (2)  | 0.83995 (9)  | 0.0245 (5)  |           |
| H84A | 0.584        | 0.7189      | 0.8694       | 0.037*      |           |
| H84B | 0.5549       | 0.8532      | 0.8457       | 0.037*      |           |
| O85  | 1.14099 (16) | -0.2984 (2) | 0.72871 (9)  | 0.0240 (5)  |           |
| H85A | 1.1462       | -0.3909     | 0.7256       | 0.036*      |           |
| H85B | 1.1212       | -0.2771     | 0.7596       | 0.036*      |           |
| O86  | 1.06101 (18) | -0.0035 (3) | 0.72108 (9)  | 0.0336 (6)  |           |
| H86A | 1.0698       | -0.0114     | 0.7562       | 0.05*       |           |
| H86B | 1.024        | 0.0648      | 0.707        | 0.05*       |           |
| O87  | 0.93868 (16) | -0.2432 (2) | 0.66332 (9)  | 0.0265 (5)  |           |
| H87A | 0.8983       | -0.1937     | 0.6399       | 0.04*       |           |
| H87B | 0.9264       | -0.3336     | 0.6575       | 0.04*       |           |
| O88  | 1.22080 (16) | -0.0591 (2) | 0.65935 (9)  | 0.0268 (5)  |           |
| H88A | 1.2394       | 0.0176      | 0.6779       | 0.04*       |           |
| H88B | 1.2743       | -0.1056     | 0.6557       | 0.04*       |           |
| O91  | 0.7014 (2)   | 0.6817 (3)  | 0.77346 (12) | 0.0492 (8)  |           |
| H91A | 0.6887       | 0.7011      | 0.7381       | 0.074*      |           |
| H91B | 0.6529       | 0.7054      | 0.7911       | 0.074*      |           |
| O92  | 0.8534 (2)   | 0.8892 (3)  | 0.76493 (11) | 0.0534 (8)  |           |
| H92A | 0.8201       | 0.8254      | 0.7812       | 0.08*       |           |
| H92B | 0.894        | 0.8398      | 0.7485       | 0.08*       |           |
| O93  | 0.8302 (2)   | 0.8185 (3)  | 0.42952 (15) | 0.0599 (9)  |           |
| H93A | 0.7801       | 0.8784      | 0.4252       | 0.09*       |           |
| H93B | 0.8778       | 0.8615      | 0.4162       | 0.09*       |           |
| O94  | 0.7031 (3)   | 0.7871 (3)  | 0.53038 (15) | 0.0499 (14) | 0.840 (8) |
| H94A | 0.6928       | 0.8093      | 0.4958       | 0.075*      | 0.840 (8) |
| H94B | 0.7502       | 0.8392      | 0.5476       | 0.075*      | 0.840 (8) |
| O94' | 0.6714 (12)  | 0.8013 (18) | 0.5717 (8)   | 0.038 (6)*  | 0.160 (8) |
| O95  | 0.6591 (3)   | 0.7469 (4)  | 0.65546 (15) | 0.0719 (10) |           |
| H95A | 0.6035       | 0.8022      | 0.6458       | 0.108*      |           |
| C1   | 0.5651 (2)   | 0.4767 (3)  | 0.91659 (12) | 0.0191 (7)  |           |
| C2   | 0.5928 (2)   | 0.3377 (3)  | 0.94980 (13) | 0.0183 (6)  |           |
| C3   | 0.6041 (2)   | 0.3530 (3)  | 1.00843 (13) | 0.0208 (7)  |           |
| H3   | 0.6019       | 0.445       | 1.0251       | 0.025*      |           |
| C4   | 0.6190 (2)   | 0.2267 (3)  | 1.04167 (12) | 0.0197 (7)  |           |
| C5   | 0.6450 (2)   | 0.0662 (3)  | 1.10842 (13) | 0.0239 (7)  |           |
| Н5   | 0.6552       | 0.0227      | 1.1443       | 0.029*      |           |
| C6   | 0.6271 (2)   | 0.0893 (3)  | 1.01577 (13) | 0.0189 (7)  |           |
| C7   | 0.6167 (2)   | 0.0728 (3)  | 0.95744 (13) | 0.0214 (7)  |           |
| H7   | 0.6219       | -0.019      | 0.9411       | 0.026*      |           |
| C8   | 0.5983 (2)   | 0.1984 (3)  | 0.92389 (12) | 0.0184 (6)  |           |
|      |              |             |              |             |           |

| C9  | 0.5866 (2) | 0.1816 (3) | 0.85997 (13) | 0.0213 (7) |
|-----|------------|------------|--------------|------------|
| C10 | 0.9289 (2) | 0.0441 (3) | 0.58849 (12) | 0.0183 (7) |
| C11 | 0.9106 (2) | 0.1849 (3) | 0.55483 (12) | 0.0177 (6) |
| C12 | 0.9058 (2) | 0.1699 (3) | 0.49677 (13) | 0.0196 (7) |
| H12 | 0.9126     | 0.0781     | 0.4808       | 0.024*     |
| C13 | 0.8906 (2) | 0.2943 (3) | 0.46267 (12) | 0.0187 (6) |
| C14 | 0.8668 (2) | 0.4547 (3) | 0.39564 (13) | 0.0237 (7) |
| H14 | 0.8591     | 0.4983     | 0.3599       | 0.028*     |
| C15 | 0.8770 (2) | 0.4308 (3) | 0.48777 (13) | 0.0185 (7) |
| C16 | 0.8824 (2) | 0.4477 (3) | 0.54609 (12) | 0.0191 (7) |
| H16 | 0.8738     | 0.5393     | 0.5618       | 0.023*     |
| C17 | 0.9008 (2) | 0.3246 (3) | 0.58027 (12) | 0.0189 (7) |
| C18 | 0.9107 (2) | 0.3408 (3) | 0.64404 (13) | 0.0210 (7) |
|     |            |            |              |            |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Co1 | 0.0225 (2)  | 0.0194 (2)  | 0.0143 (2)  | 0.00200 (17) | 0.00370 (17) | 0.00148 (17) |
| Co2 | 0.0228 (2)  | 0.0182 (2)  | 0.0151 (2)  | 0.00204 (17) | 0.00394 (17) | 0.00131 (17) |
| N1  | 0.0294 (14) | 0.0225 (14) | 0.0147 (13) | 0.0035 (12)  | 0.0033 (11)  | 0.0005 (11)  |
| N2  | 0.0312 (15) | 0.0180 (13) | 0.0213 (14) | 0.0038 (11)  | 0.0068 (12)  | 0.0026 (11)  |
| N3  | 0.0293 (14) | 0.0218 (14) | 0.0146 (13) | 0.0026 (11)  | 0.0053 (11)  | 0.0029 (11)  |
| N4  | 0.0288 (14) | 0.0173 (13) | 0.0180 (14) | 0.0029 (11)  | 0.0026 (11)  | 0.0020 (11)  |
| 01  | 0.0218 (11) | 0.0201 (11) | 0.0182 (11) | 0.0012 (9)   | 0.0018 (9)   | 0.0033 (9)   |
| 02  | 0.0313 (13) | 0.0216 (12) | 0.0330 (13) | -0.0045 (10) | -0.0024 (10) | 0.0076 (10)  |
| O3  | 0.0314 (12) | 0.0221 (12) | 0.0180 (11) | -0.0017 (10) | 0.0073 (9)   | 0.0001 (10)  |
| O4  | 0.0743 (19) | 0.0210 (13) | 0.0193 (12) | -0.0099 (12) | 0.0050 (12)  | -0.0027 (10) |
| 05  | 0.0209 (11) | 0.0211 (11) | 0.0182 (11) | 0.0030 (9)   | 0.0038 (9)   | 0.0043 (9)   |
| O6  | 0.0232 (12) | 0.0232 (12) | 0.0347 (13) | -0.0012 (10) | 0.0032 (10)  | 0.0095 (10)  |
| 07  | 0.0611 (17) | 0.0240 (13) | 0.0177 (12) | 0.0165 (12)  | 0.0123 (11)  | 0.0057 (10)  |
| 08  | 0.0635 (17) | 0.0201 (12) | 0.0184 (12) | -0.0012 (12) | 0.0068 (11)  | -0.0024 (10) |
| O81 | 0.0270 (12) | 0.0352 (13) | 0.0162 (11) | 0.0034 (10)  | 0.0035 (9)   | 0.0044 (10)  |
| 082 | 0.0465 (15) | 0.0324 (13) | 0.0175 (12) | 0.0148 (11)  | 0.0046 (10)  | 0.0012 (10)  |
| O83 | 0.0257 (12) | 0.0360 (14) | 0.0313 (13) | -0.0021 (10) | 0.0084 (10)  | -0.0041 (11) |
| O84 | 0.0279 (12) | 0.0194 (11) | 0.0254 (12) | -0.0008 (9)  | 0.0016 (10)  | 0.0058 (9)   |
| O85 | 0.0330 (12) | 0.0231 (12) | 0.0171 (11) | 0.0056 (10)  | 0.0077 (10)  | 0.0023 (9)   |
| O86 | 0.0490 (15) | 0.0325 (13) | 0.0183 (12) | 0.0157 (12)  | 0.0021 (11)  | -0.0024 (10) |
| O87 | 0.0286 (12) | 0.0202 (12) | 0.0302 (13) | -0.0010 (10) | 0.0036 (10)  | 0.0063 (10)  |
| O88 | 0.0227 (12) | 0.0233 (12) | 0.0345 (13) | 0.0003 (9)   | 0.0052 (10)  | -0.0006 (10) |
| O91 | 0.0509 (17) | 0.0457 (17) | 0.0576 (18) | 0.0134 (14)  | 0.0278 (14)  | 0.0186 (14)  |
| O92 | 0.070 (2)   | 0.0516 (18) | 0.0443 (17) | -0.0194 (16) | 0.0270 (15)  | -0.0080 (14) |
| O93 | 0.0347 (15) | 0.0281 (15) | 0.120 (3)   | 0.0071 (12)  | 0.0217 (17)  | 0.0268 (16)  |
| O94 | 0.067 (2)   | 0.0368 (19) | 0.040 (2)   | -0.0193 (17) | -0.0086 (18) | 0.0133 (16)  |
| O95 | 0.073 (2)   | 0.059 (2)   | 0.079 (2)   | 0.0141 (18)  | -0.0002 (19) | -0.0172 (18) |
| C1  | 0.0250 (17) | 0.0194 (16) | 0.0139 (15) | 0.0009 (13)  | 0.0065 (13)  | 0.0004 (12)  |
| C2  | 0.0180 (15) | 0.0166 (15) | 0.0202 (16) | 0.0007 (12)  | 0.0031 (13)  | 0.0031 (13)  |
| C3  | 0.0260 (16) | 0.0180 (16) | 0.0185 (16) | 0.0006 (13)  | 0.0038 (13)  | -0.0011 (13) |
| C4  | 0.0225 (16) | 0.0219 (16) | 0.0147 (15) | 0.0012 (13)  | 0.0030 (12)  | 0.0016 (13)  |

| 0.0311 (18) | 0.0237 (17)                                                                                                                                                                                     | 0.0176 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0044 (14)                                          | 0.0066 (14)                                          | 0.0051 (14)                                          |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 0.0221 (16) | 0.0170 (16)                                                                                                                                                                                     | 0.0178 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0015 (12)                                          | 0.0039 (13)                                          | 0.0020 (13)                                          |
| 0.0262 (17) | 0.0184 (16)                                                                                                                                                                                     | 0.0200 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0001 (13)                                          | 0.0052 (13)                                          | -0.0015 (13)                                         |
| 0.0183 (15) | 0.0204 (16)                                                                                                                                                                                     | 0.0173 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000 (12)                                          | 0.0055 (12)                                          | -0.0003 (13)                                         |
| 0.0245 (16) | 0.0210 (17)                                                                                                                                                                                     | 0.0188 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0004 (13)                                          | 0.0048 (13)                                          | 0.0012 (14)                                          |
| 0.0264 (17) | 0.0183 (16)                                                                                                                                                                                     | 0.0110 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0016 (13)                                          | 0.0052 (13)                                          | -0.0022 (12)                                         |
| 0.0155 (14) | 0.0197 (16)                                                                                                                                                                                     | 0.0184 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0015 (12)                                          | 0.0042 (12)                                          | 0.0000 (13)                                          |
| 0.0263 (16) | 0.0158 (15)                                                                                                                                                                                     | 0.0173 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0023 (13)                                          | 0.0053 (13)                                          | -0.0003 (12)                                         |
| 0.0202 (15) | 0.0200 (16)                                                                                                                                                                                     | 0.0161 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0016 (13)                                          | 0.0037 (12)                                          | 0.0011 (13)                                          |
| 0.0323 (18) | 0.0225 (17)                                                                                                                                                                                     | 0.0163 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0004 (14)                                          | 0.0042 (14)                                          | 0.0033 (14)                                          |
| 0.0182 (15) | 0.0186 (16)                                                                                                                                                                                     | 0.0179 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.0001 (12)                                         | 0.0010 (12)                                          | 0.0035 (13)                                          |
| 0.0210 (15) | 0.0168 (15)                                                                                                                                                                                     | 0.0195 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0009 (13)                                          | 0.0029 (13)                                          | -0.0028 (13)                                         |
| 0.0187 (15) | 0.0215 (16)                                                                                                                                                                                     | 0.0160 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0006 (12)                                          | 0.0017 (12)                                          | 0.0003 (13)                                          |
| 0.0220 (16) | 0.0228 (18)                                                                                                                                                                                     | 0.0191 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.0011 (13)                                         | 0.0056 (13)                                          | -0.0003 (14)                                         |
|             | 0.0311 (18)<br>0.0221 (16)<br>0.0262 (17)<br>0.0183 (15)<br>0.0245 (16)<br>0.0264 (17)<br>0.0155 (14)<br>0.0203 (16)<br>0.0202 (15)<br>0.0323 (18)<br>0.0182 (15)<br>0.0210 (15)<br>0.0220 (16) | $\begin{array}{ccccccc} 0.0311 (18) & 0.0237 (17) \\ 0.0221 (16) & 0.0170 (16) \\ 0.0262 (17) & 0.0184 (16) \\ 0.0183 (15) & 0.0204 (16) \\ 0.0245 (16) & 0.0210 (17) \\ 0.0264 (17) & 0.0183 (16) \\ 0.0155 (14) & 0.0197 (16) \\ 0.0263 (16) & 0.0158 (15) \\ 0.0202 (15) & 0.0200 (16) \\ 0.0323 (18) & 0.0225 (17) \\ 0.0182 (15) & 0.0186 (16) \\ 0.0210 (15) & 0.0168 (15) \\ 0.0187 (15) & 0.0215 (16) \\ 0.0220 (16) & 0.0228 (18) \\ \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

Geometric parameters (Å, °)

| Col—Ol               | 2.075 (2) | O85—H85A | 0.8492     |
|----------------------|-----------|----------|------------|
| Co1-081              | 2.088 (2) | O85—H85B | 0.8453     |
| Co1—O83              | 2.089 (2) | O86—H86A | 0.8289     |
| Co1—O82              | 2.103 (2) | O86—H86B | 0.8315     |
| Co1—N1 <sup>i</sup>  | 2.114 (3) | O87—H87A | 0.8418     |
| Co1—O84              | 2.152 (2) | O87—H87B | 0.8463     |
| Co2—O88              | 2.059 (2) | O88—H88A | 0.8427     |
| Co2—O5               | 2.090 (2) | O88—H88B | 0.8502     |
| Co2—O87              | 2.104 (2) | O91—H91A | 0.85       |
| Co2—O86              | 2.118 (2) | O91—H91B | 0.8579     |
| Co2—N3 <sup>ii</sup> | 2.133 (3) | O92—H92A | 0.8623     |
| Co2—O85              | 2.133 (2) | O92—H92B | 0.8503     |
| N1C5                 | 1.322 (4) | O93—H93A | 0.859      |
| N1—C4                | 1.391 (4) | О93—Н93В | 0.8553     |
| N1—Co1 <sup>i</sup>  | 2.114 (3) | O94—O94' | 1.142 (18) |
| N2—C5                | 1.332 (4) | O94—H94A | 0.8377     |
| N2—C6                | 1.383 (4) | O94—H94B | 0.8405     |
| N2—H2                | 0.86      | O95—H95A | 0.8987     |
| N3—C14               | 1.328 (4) | C1—C2    | 1.507 (4)  |
| N3—C13               | 1.395 (4) | C2—C3    | 1.386 (4)  |
| N3—Co2 <sup>ii</sup> | 2.133 (3) | C2—C8    | 1.419 (4)  |
| N4-C14               | 1.336 (4) | C3—C4    | 1.392 (4)  |
| N4-C15               | 1.383 (4) | С3—Н3    | 0.93       |
| N4—H4                | 0.86      | C4—C6    | 1.408 (4)  |
| 01—C1                | 1.261 (4) | С5—Н5    | 0.93       |
| O2—C1                | 1.258 (4) | C6—C7    | 1.381 (4)  |
| О3—С9                | 1.262 (4) | C7—C8    | 1.394 (4)  |
| O4—C9                | 1.248 (4) | С7—Н7    | 0.93       |
| O5—C10               | 1.259 (4) | C8—C9    | 1.512 (4)  |
| O6—C10               | 1.254 (4) | C10—C11  | 1.511 (4)  |
| O7—C18               | 1.252 (4) | C11—C12  | 1.380 (4)  |
|                      |           |          |            |

| O8—C18                    | 1.260 (4)   | C11—C17       | 1.425 (4) |
|---------------------------|-------------|---------------|-----------|
| O81—H81A                  | 0.8597      | C12—C13       | 1.390 (4) |
| O81—H81B                  | 0.8436      | C12—H12       | 0.93      |
| O82—H82A                  | 0.8483      | C13—C15       | 1.405 (4) |
| O82—H82B                  | 0.8541      | C14—H14       | 0.93      |
| O83—H83A                  | 0.8276      | C15—C16       | 1.387 (4) |
| O83—H83B                  | 0.8533      | C16—C17       | 1.384 (4) |
| O84—H84A                  | 0.8491      | С16—Н16       | 0.93      |
| O84—H84B                  | 0.8475      | C17—C18       | 1.510 (4) |
| O1—Co1—O81                | 170.17 (9)  | Со2—О87—Н87В  | 119.9     |
| O1—Co1—O83                | 88.25 (9)   | H87A—O87—H87B | 109.1     |
| O81—Co1—O83               | 89.55 (9)   | Co2—O88—H88A  | 124.2     |
| O1—Co1—O82                | 81.36 (8)   | Co2—O88—H88B  | 123.1     |
| O81—Co1—O82               | 89.00 (9)   | H88A—O88—H88B | 106.6     |
| O83—Co1—O82               | 88.35 (9)   | H91A—O91—H91B | 113       |
| O1—Co1—N1 <sup>i</sup>    | 98.29 (9)   | H92A—O92—H92B | 105.6     |
| O81—Co1—N1 <sup>i</sup>   | 91.34 (9)   | Н93А—О93—Н93В | 106.4     |
| 083—Co1—N1 <sup>i</sup>   | 91.46 (10)  | H94A—O94—H94B | 109.4     |
| O82—Co1—N1 <sup>i</sup>   | 179.61 (10) | O2—C1—O1      | 124.5 (3) |
| O1—Co1—O84                | 91.72 (8)   | O2—C1—C2      | 118.7 (3) |
| O81—Co1—O84               | 90.09 (8)   | O1—C1—C2      | 116.5 (3) |
| O83—Co1—O84               | 177.69 (9)  | C3—C2—C8      | 121.5 (3) |
| O82—Co1—O84               | 89.36 (9)   | C3—C2—C1      | 114.9 (3) |
| N1 <sup>i</sup> —Co1—O84  | 90.83 (9)   | C8—C2—C1      | 123.4 (3) |
| O88—Co2—O5                | 87.45 (8)   | C2—C3—C4      | 118.1 (3) |
| O88—Co2—O87               | 173.57 (9)  | С2—С3—Н3      | 120.9     |
| O5—Co2—O87                | 90.48 (8)   | С4—С3—Н3      | 120.9     |
| O88—Co2—O86               | 85.63 (9)   | N1—C4—C3      | 130.6 (3) |
| O5—Co2—O86                | 82.13 (8)   | N1—C4—C6      | 109.4 (3) |
| O87—Co2—O86               | 88.05 (9)   | C3—C4—C6      | 120.0 (3) |
| O88—Co2—N3 <sup>ii</sup>  | 90.76 (9)   | N1—C5—N2      | 113.7 (3) |
| O5—Co2—N3 <sup>ii</sup>   | 98.09 (9)   | N1—C5—H5      | 123.1     |
| O87—Co2—N3 <sup>ii</sup>  | 95.57 (9)   | N2—C5—H5      | 123.1     |
| O86—Co2—N3 <sup>ii</sup>  | 176.37 (10) | C7—C6—N2      | 132.8 (3) |
| O88—Co2—O85               | 92.79 (8)   | C7—C6—C4      | 122.4 (3) |
| O5—Co2—O85                | 167.66 (8)  | N2—C6—C4      | 104.8 (3) |
| O87—Co2—O85               | 87.93 (8)   | C6—C7—C8      | 117.8 (3) |
| O86—Co2—O85               | 85.59 (9)   | С6—С7—Н7      | 121.1     |
| N3 <sup>ii</sup> —Co2—O85 | 94.25 (9)   | С8—С7—Н7      | 121.1     |
| C5—N1—C4                  | 104.5 (3)   | C7—C8—C2      | 120.1 (3) |
| C5—N1—Co1 <sup>i</sup>    | 122.9 (2)   | C7—C8—C9      | 118.3 (3) |
| C4—N1—Co1 <sup>i</sup>    | 130.5 (2)   | C2—C8—C9      | 121.6 (3) |
| C5—N2—C6                  | 107.6 (3)   | O4—C9—O3      | 124.0 (3) |
| C5—N2—H2                  | 126.2       | O4—C9—C8      | 118.5 (3) |
| C6—N2—H2                  | 126.2       | O3—C9—C8      | 117.6 (3) |
| C14—N3—C13                | 104.2 (3)   | O6—C10—O5     | 124.5 (3) |

| C14—N3—Co2 <sup>ii</sup>  | 125.6 (2)   | O6—C10—C11  | 118.5 (3) |
|---------------------------|-------------|-------------|-----------|
| C13—N3—Co2 <sup>ii</sup>  | 129.7 (2)   | O5—C10—C11  | 116.8 (3) |
| C14—N4—C15                | 107.1 (3)   | C12—C11—C17 | 121.5 (3) |
| C14—N4—H4                 | 126.5       | C12—C11—C10 | 115.1 (3) |
| C15—N4—H4                 | 126.5       | C17—C11—C10 | 123.4 (3) |
| C1—O1—Co1                 | 128.73 (19) | C11—C12—C13 | 118.9 (3) |
| C10—O5—Co2                | 130.89 (19) | C11—C12—H12 | 120.5     |
| Co1—O81—H81A              | 112.8       | C13—C12—H12 | 120.5     |
| Co1—O81—H81B              | 106.1       | C12—C13—N3  | 131.3 (3) |
| H81A—O81—H81B             | 106.9       | C12—C13—C15 | 119.3 (3) |
| Co1—O82—H82A              | 114.7       | N3—C13—C15  | 109.4 (3) |
| Co1—O82—H82B              | 130.3       | N3-C14-N4   | 114.0 (3) |
| H82A—O82—H82B             | 109.7       | N3-C14-H14  | 123       |
| Co1—O83—H83A              | 113.5       | N4-C14-H14  | 123       |
| Co1—O83—H83B              | 123.3       | N4-C15-C16  | 132.3 (3) |
| H83A—O83—H83B             | 109.6       | N4—C15—C13  | 105.4 (3) |
| Co1—O84—H84A              | 97.6        | C16—C15—C13 | 122.4 (3) |
| Co1—O84—H84B              | 118.2       | C17—C16—C15 | 118.3 (3) |
| H84A—O84—H84B             | 108.6       | C17—C16—H16 | 120.8     |
| Co2—O85—H85A              | 122.9       | C15-C16-H16 | 120.8     |
| Co2—O85—H85B              | 114.9       | C16—C17—C11 | 119.6 (3) |
| H85A—O85—H85B             | 110.2       | C16—C17—C18 | 119.3 (3) |
| Co2—O86—H86A              | 129.6       | C11—C17—C18 | 121.1 (3) |
| Co2—O86—H86B              | 111.4       | O7—C18—O8   | 123.3 (3) |
| H86A—O86—H86B             | 116.6       | O7—C18—C17  | 118.4 (3) |
| Co2—O87—H87A              | 105.7       | O8—C18—C17  | 118.3 (3) |
| $\mathbf{C}_{\mathbf{r}}$ | (ii)        |             |           |

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+2, -y, -z+1.

## Hydrogen-bond geometry (Å, °)

| D—H···A                         | <i>D</i> —Н | H···A | $D \cdots A$ | D—H··· $A$ |
|---------------------------------|-------------|-------|--------------|------------|
| N2—H2···O94 <sup>iii</sup>      | 0.86        | 1.96  | 2.779 (4)    | 159        |
| N4—H4…O93                       | 0.86        | 1.84  | 2.673 (4)    | 164        |
| O81—H81A···O3 <sup>iv</sup>     | 0.86        | 1.84  | 2.683 (3)    | 166        |
| O81—H81B···O85 <sup>v</sup>     | 0.84        | 2.05  | 2.883 (3)    | 172        |
| O82—H82A…O3                     | 0.85        | 2.14  | 2.974 (3)    | 169        |
| O82—H82B···O4 <sup>iv</sup>     | 0.85        | 1.84  | 2.691 (3)    | 176        |
| O83—H83A…O95 <sup>vi</sup>      | 0.83        | 2.05  | 2.812 (4)    | 153        |
| O83—H83B···O6 <sup>iv</sup>     | 0.85        | 1.96  | 2.721 (3)    | 147        |
| O84—H84A…O2                     | 0.85        | 1.8   | 2.616 (3)    | 162        |
| O84—H84B···O4 <sup>vii</sup>    | 0.85        | 1.88  | 2.708 (3)    | 165        |
| O85—H85A····O92 <sup>viii</sup> | 0.85        | 2.02  | 2.850 (4)    | 167        |
| O85—H85B···O7 <sup>ix</sup>     | 0.85        | 1.82  | 2.649 (3)    | 168        |
| O86—H86A···O8 <sup>ix</sup>     | 0.83        | 1.88  | 2.711 (3)    | 176        |
| O86—H86B…O7                     | 0.83        | 2.03  | 2.859 (3)    | 178        |
| O87—H87A…O6                     | 0.84        | 1.85  | 2.642 (3)    | 156        |

| O87—H87B…O8 <sup>x</sup>      | 0.85 | 1.86 | 2.689 (3) | 166 |  |
|-------------------------------|------|------|-----------|-----|--|
| O88—H88A…O91 <sup>ix</sup>    | 0.84 | 1.98 | 2.813 (3) | 173 |  |
| O88—H88B····O3 <sup>ix</sup>  | 0.85 | 1.9  | 2.732 (3) | 165 |  |
| O91—H91A···O95                | 0.85 | 1.99 | 2.836 (4) | 180 |  |
| O91—H91B…O84                  | 0.86 | 1.98 | 2.837 (3) | 174 |  |
| O92—H92A…O91                  | 0.86 | 2.05 | 2.813 (4) | 148 |  |
| O92—H92B…O87 <sup>vii</sup>   | 0.85 | 2.34 | 3.089 (4) | 148 |  |
| O93—H93A····O2 <sup>xi</sup>  | 0.86 | 2.07 | 2.844 (3) | 151 |  |
| O93—H93A…O88 <sup>xii</sup>   | 0.86 | 2.6  | 3.045 (4) | 114 |  |
| O93—H93B····O5 <sup>xii</sup> | 0.86 | 1.95 | 2.788 (3) | 168 |  |
| O94—H94A····O2 <sup>xi</sup>  | 0.84 | 2.1  | 2.889 (4) | 158 |  |
| O94—H94A…O93                  | 0.84 | 2.62 | 3.180 (5) | 126 |  |
| O94—H94B···O6 <sup>vii</sup>  | 0.84 | 2.04 | 2.873 (4) | 174 |  |
| O95—H95A…O1 <sup>iv</sup>     | 0.9  | 2.07 | 2.910 (4) | 155 |  |

Symmetry codes: (iii) x, -y+1/2, z+1/2; (iv) -x+1, y+1/2, -z+3/2; (v) x-1, y+1, z; (vi) -x+1, y-1/2, -z+3/2; (vii) x, y+1, z; (viii) -x+2, y-3/2, -z+3/2; (ix) -x+2, y-1/2, -z+3/2; (x) x, y-1, z; (xi) x, -y+3/2, z-1/2; (xii) -x+2, -y+1, -z+1.

Fig. 1





Fig. 2